
Teleoperated aerial manipulator and its avatar.
Communication, system’s interconnection, and virtual world.

Germán Ramírez1, Thibaut Raharijaona2, Gerardo Flores3

1 Center for Research in Optics, México
carlosrp@cio.mx

2 Laboratoire Conception, Fabrication, Commande (LCFC, Metz), France
thibaut.raharijaona@univ-lorraine.fr

3 Center for Research in Optics, México
gflores@cio.mx

Mots-clés : Teleoperation, Virtual Reality, Aerial manipulator.

1 Introduction
Drones are increasingly being used as tools in a wide variety of applications, such as sur-

veillance, and precision agriculture, and in many cases, drones have the potential to reach
inaccessible or hazardous locations where human access is limited or risky [1, 2], which is why
a drone teleoperation is a valuable tool because it enables operators to remotely control drones
over a network connection, ensuring safe and precise navigation. For this reason, several efforts
have been conducted for robot teleoperation [3]. However, nowadays technology is not entirely
developed to achieve complex tasks autonomously. One of the major problems for teleoperated
systems, especially for mobile robots, is the human pilot’s visual limited range [4, 5] That is
why we propose a human-in-the-loop system combining the use of drones with virtual reality
and mapping to accomplish these kinds of tasks. This project consists of the development of a
teleoperated drone that can be visualized in Unity with real-time virtual reality and that has
a haptic system and a robotic arm as shown in Figure (1).

2 System

2.1 Virtual reality environment
The purpose of designing this environment in Unity is to create a 3D remote teleoperation

ground station. It allows virtual reality devices to visualize the environment and get a robot’s
position feedback in the real world. The aerial manipulator model in Unity contains several
apps. These apps work individually and interact to create and send the robot’s states depending
on the input information. The Unity model’s main reference is placed on the UAV body followed
by each link of the robotic arm. Each revolute joint represents every degree of freedom that
moves individually. The model’s main reference contains one app to get the vehicle’s position
and another app to communicate Unity and Gazebo. Depending on the position input, the



FIG. 1 – Teleoperated UAV in Unity.

first code generates the necessary force to be applied on each rotor to get the desired attitude
(ϕ,θ,ψ). The desired attitude leads to the desired position values from Gazebo. This virtual
environment in Unity3D is a recreation of the real world where the aerial manipulator is moving.

2.2 Control and software in the loop

Gazebo is a 3D open-source simulator that provides sensors, actuators control, cameras,
simulation tools, and realistic dynamics of each model. The purpose of making this second
virtual model is to work on a SITL simulation. Gazebo allows testing and simulating the
aerial manipulator before being tested in the real world. We program the aerial manipulator’s
Gazebo model with the PX4 firmware being one of the most used autopilots by the robotics
community. PX4 firmware contains packages that integrate the gazebo to perform SITL and
facilitate the vehicle’s design and control implementation in this case we have used [7]. To
communicate with some external software/hardware, a communication protocol to process the
messages is needed. In this case, MAVROS (mavlink/ROS) was the best option to extract or
send information through the PX4-Gazebo via Python/C++ scripts.

2.3 Communication

MAVROS is a ROS node that allows communication through mavlink protocols containing
several topics. Each of them contains specific information about sensors and actuators from
the aerial robot. As was previously mentioned, the required topics are the LocalPosition (sub-
scriber) and MountControl (publisher). To get data from LocalPosition a python script was
created using rospy and allows linking python with ROS. Then, the geometry message is defi-
ned to establish communication with the aerial robot and be published in the servo message.
To allow Unity to get the message a ROSBridge protocol is used. This protocol, which is a
WebSocket, subscribes to servo messages to get the positions messages via the Internet. To
get and read Unity’s message, a script is created to communicate with Ubuntu using an IP
address. The receiving data is obtained from the servo message using JSON-formatted scripts.
Once Unity gets the positions it moves the virtual environment’s vehicle to get to the same
position as the message. Another python script is created to publish 3 variables for each joint
of the robotic arm. Gazebo reads those 3 variables and moves the robotic arm to the desired
position. Unity subscribes to a message called data to get the robotic arm information and
move the manipulator in the virtual environment. A complete diagram of the communication
structure is shown in as show Figure (2).

2.4 Experiments

In this experiment, the aerial robot is teleoperated through the HTC Vive. The task to
perform is to take an object and transport it to a given point chosen by the operator. This is



performed in the Gazebo environment while running the control algorithm. The avatar copies
the task and the environment. The results demonstrate the control performance and robustness
to a mass variation under forces and moments generated by the arm and exerted on the drone.
The mass of the object is 160 grams.

A video of the experiments is available in the following link
https ://www.youtube.com/watch ?v=Ipo-vKNvP8k

FIG. 2 – Diagram of the system architecture.

3 Conclusions
A teleoperated aerial manipulator was simulated in a virtual environment in Unity 3D and

Gazebo. The simulation contains the vehicle dynamics and the kinematics of the manipulator
and the control program in the PX4 firmware in Gazebo. Also, it is teleoperated remotely by
commands transmitted via ROSBridge protocol (WebSockets). This allowed the VR application
to visualize in real-time the states of the aerial manipulator. The time response can be improved
using high-performance computer equipment besides considering a higher speed internet and
a different communication protocol.

Références
[1] Watkins S, Burry J, Mohamed A, Marino M, Prudden S, Fisher A, Kloet N, Jakobi T

and Clothier R (2020). Ten questions concerning the use of drones in urban environments.
Journal Pre-proof.

[2] J. Escareno, G. Flores, M. Rakotondrabe, H. Romero, R. Lozano, and E. Rubio (2014).
Task-based control of a multirotor miniature aerial vehicle having an onboard manipulator.
International Conference on Unmanned Aircraft Systems (ICUAS).

[3] D. Zhang, G. Yang, and R. P. Khurshid (2020). Haptic teleoperation of UAVs through
control barrier functions. IEEE Transactions on Haptics.

[4] J. Thomason, P. Ratsamee, J. Orlosky, K. Kiyokawa, T. Mashita, Y. Uranishi, and H.
Takemura (2019). A comparison of adaptive view techniques for exploratory 3d drone
teleoperation. ACM Trans. Interact..

[5] G. Flores, S. Zhou, R. Lozano, and P. Castillo (2013). A vision and GPS-based real-time
trajectory planning for MAV in unknown urban environments. International Conference
on Unmanned Aircraft Systems (ICUAS).

[6] R. Verdín, G. Ramírez, C. Rivera and G. Flores (2021). Teleoperated aerial manipulator
and its avatar. Communication, system’s interconnection, and virtual world. International
Conference on Unmanned Aircraft Systems (ICUAS).

[7] G. Flores and R. Lozano (2013). Lyapunov-based controller using singular perturbation
theory : An application on a mini-UAV. American Control Conference.


